The real closure of a commutative regular f-ring

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Regular Digraph of Ideals of a Commutative Ring

Let R be a commutative ring and Max (R) be the set of maximal ideals of R. The regular digraph of ideals of R, denoted by −−→ Γreg(R), is a digraph whose vertex set is the set of all non-trivial ideals of R and for every two distinct vertices I and J , there is an arc from I to J whenever I contains a J-regular element. The undirected regular (simple) graph of ideals of R, denoted by Γreg(R), h...

متن کامل

Commutative Regular Rings with Integral Closure

First order conditions are given which are necessary for a commutative regular ring to have a prime integrally closed extension. If the ring is countable these conditions are also sufficient. In [8] an example was given of a commutative regular ring with no prime model extension to a commutative integrally closed regular ring. In this paper we give (in §2) first order conditions which are neces...

متن کامل

THE LEFT REGULAR REPRESENTATION OF A COMMUTATIVE SEPARATIVE SEMIGROUP

In this paper, a commutative semigroup will be written as a disjoint union of its cancellative subsemigroups. Based on this fact we will define the left regular representation of a commutative separative semigroup and show that this representation is faithful. Finally concrete examples of commutative separative semigroups, their decompositions and their left regular representations are given.

متن کامل

The sum-annihilating essential ideal graph of a commutative ring

Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...

متن کامل

The annihilator-inclusion Ideal graph of a commutative ring

Let R be a commutative ring with non-zero identity. The annihilator-inclusion ideal graph of R , denoted by ξR, is a graph whose vertex set is the of allnon-zero proper ideals of $R$ and two distinct vertices $I$ and $J$ are adjacentif and only if either Ann(I) ⊆ J or Ann(J) ⊆ I. In this paper, we investigate the basicproperties of the graph ξR. In particular, we showthat ξR is a connected grap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamenta Mathematicae

سال: 1977

ISSN: 0016-2736,1730-6329

DOI: 10.4064/fm-94-3-173-176